Quantum Technologies

OEwaves develops complete laser suites for quantum technology. Our products produce low phase noise/low relative intensity noise, in small size and with small power consumption.

OEwaves’ unique approach for injection-locking of semiconductor lasers to crystalline whispering gallery mode resonators specifically addresses the needs of quantum technology applications. These applications typically require exceptionally low phase and amplitude noise levels at specific wavelengths corresponding to narrow atomic or ion transition. They also require high free running stability to enable locking the lasers to the transitions of interest. The frequency tunability and high actuation bandwidth of OEwaves lasers allow for realizing efficient phase and frequency locks without electro-optical modulators. Finally, for quantum technology applications the lasers must be scalable to use in future systems where multiples of units will be required. In this respect, OEwaves lasers are particularly suitable because unlike other large and expensive lasers, their size, weight and power consumption and cost (SWaP-C) are compatible with up-scaling for future systems.  


Potential applications of OEwaves’ lasers in quantum technologies include the emerging fields of quantum communications, quantum computing, and quantum sensors, which take advantage of quantum phenomena such as superposition, quantum coherence, and entanglement for increased performance. For example, quantum communications, the most advanced of the three, relies on quantum entanglement and coherence to create secure communications channels that are essentially immune to interference and hacking. Similarly, quantum computing offers the possibility of solving problems that are beyond the capability of digital computers. Finally, quantum sensors, such as atomic clocks, quantum magnetometers, radar and lidar provide much higher performance for metrology than classical counterparts.


OEwaves produces custom lasers at specific wavelengths with ultra-low phase noise and small SWaP-C, to meet individual applications. In particular, OEwaves can manufacture lasers in the uv and visible regions of the spectrum, where most atomic and ion transitions occur.  With sub-Hertz linewidth, OEwaves’ lasers can increase the overlap with those narrow transitions, and thus reduce the amount of power needed to excite them.

Related Products



Quantum Communications

Quantum Computing

Quantum Sensors

Atomic Clocks




Contact Us to Learn More

©2020 by OEwaves, Inc.